METAL MORPHOSIS

Optimization of joining processes for new automotive metal-composite hybrid parts

Final Seminar

Author(s):

Date:

Life-Cycle Assessment of the MetalMorphosis approach

Grant Agreement Nr: 609039 Collaborative Project - FP7-2013-NMP-ICT-FOF(RTD)

Stefano Ellero (Stam) 24th February 2016

Stam

- The first step is the Life Cycle Inventory: an objective, data-based process for quantifying energy and raw materials requirements, emissions and other environmental releases generated.
- Then the environmental impacts of the proposed joining processes are analyzed through a Life-Cycle Impact Analysis.
- LCA needs specific software tools and proper databases for background information.
- The chosen software was OpenLCA; GaBi professional database was selected for the background information of the LCI.

Life Cycle Inventory

openLCA example model:

Brake Pedal - MetalMorphosis manufacturing method – Production & QC

Life Cycle Impact Assessment

- Stam has chosen to follow the CML method, i.e. the methodology of the Center for Environmental Studies (CML) of Leiden University.
- It is based on the calculation of the following impact indexes:
 - Acidification potential [kg SO₂-eq]
 - Climate change Global Warming Potential [kg CO₂-eq]
 - Depletion of abiotic resources elements, ultimate reserves [kg antimony eq]
 - Depletion of abiotic resources fossil fuels [MJ]
 - Eutrophication [kg PO₄-eq]
 - Freshwater aquatic ecotoxicity [kg 1,4-dichlorobenzene eq]
 - Human toxicity [kg 1,4-dichlorobenzene eq]
 - Marine aquatic ecotoxicity [kg 1,4-dichlorobenzene eq]
 - Ozone layer depletion [kg CFC-11 eq]
 - Terrestrial ecotoxicity [kg 1,4-dichlorobenzene eq]

Shock Absorber: Manufacturing & QC

Shock Absorber: + Utilization

Shock Absorber: + Landfill Disposal

Brake Pedal: Manufacturing & QC

METAL MORPHOSIS

Brake Pedal: + Utilization

METAL MORPHOSIS

Car Bumper: Manufacturing & QC

Car Bumper: + Utilization

Conclusions

- The MetalMorphosis method generally reduces environmental impacts during the products utilization
- The components where the highest weight save is reached show the greatest advantages of the MetalMorphosis
- The most impacting processes are: composite materials production, steel working, raw aluminum production
- Possible corrective actions to further improve the MetalMorphosis approach w.r.t. state-of-art manufacturing:
 - Investigating less impacting PA 6.6, glass fibers and epoxy resin production methods, mainly concerning Ozone layer depletion
 - Replacing aluminum with less impacting metals concerning Ozone layer depletion and Marine Ecotoxicity

Thanks for your attention!

